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Abstract

The effect of oscillations on heat transfer at vertical surfaces is investigated and a model is developed that predicted

both the transient and time average heat transfer rates. The transient behavior of the heat transfer indicates the presence

of an oscillatory component superimposed on a larger steady one that does not reach zero during flow reversal. This

was explained in terms of the interaction between a ‘‘quasi-steady oscillatory’’ mechanism near the leading edge, and a

‘‘pseudo-steady diffusive’’ far from it. The analysis further revealed that the time average heat transfer rate can be ade-

quately estimated using a mixed ‘‘forced-natural’’ convections correlation, with the forced convection component esti-

mated based on the time average oscillatory Reynolds number Rev = awL/m. The agreement between the model

predictions and the experimental measurements makes it applicable for predicting heat transfer characteristics and

velocity fluctuations near heated vertical surfaces in presence of oscillatory motion. The model is also applicable for

predicting heat transfer rates under conditions where oscillatory motion is used to achieve specificity in temperature

control without affecting process residence time, such as in biomedical and biochemical applications. The modest heat

transfer enhancement (<2) due to oscillatory motion is attributed to the small convective term in the energy equation,

which is consistent with previous investigations where increasing the axial temperature gradient in presence of oscilla-

tory motion was shown to achieve much higher heat transfer enhancement.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Oscillatory flows has been known to result in higher

rates of heat and mass transfer, and numerous studies

have been done to understand its characteristics in dif-
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ferent systems such as reciprocating engines, pulse com-

bustors, and chemical reactors to cite a few [1–3]. The

work of Kersweg [4–6] is of particular interest since it

demonstrated the possibility of achieving significant heat

transfer enhancement by increasing the axial tempera-

ture gradient in presence of oscillatory motion. This

has led to the revised interest in the subject matter with

the advent of new technological applications such as

high-performance Stirling engines and pulse tube

cryocoolers where great deal of effort is being devoted

towards their development for military, space and
ed.

mailto:gomaah@bmts.com	


Nomenclature

a amplitude of plate vibration [mm]

f frequency of electrode vibration [Hz]

g acceleration of gravity [mm/s2]

Gr Grashof number (Gr = kgL3/m2)
h heat transfer coefficient [mm/s]

L length of surface active area [mm]

p dimensionless function, Eq. (10)

Nu Nusselt number (Nu = hL/a)
Pr Prantdl number (Pr = m/a)
Re Reynolds number (Re = uL/m)
S shear rate at the solid–liquid interface [s�1]

t time [s]

T temperature [0K]

u x-directional velocity [mm/s]

v y-directional velocity [mm/s]

x positions along the flat plate [mm]

y positions normal to the flat plate [mm]

y
^

centre of mass, Eq. (37) [mm]

Greek symbols

a thermal diffusion coefficient [mm2/s]

b, c coefficients, Eq. (18)

k coefficient of volumetric expansion, Eq. (8)

m kinematic viscosity [mm2/s]

q fluid density [g/mm3]

x circular frequency of vibration, 2pf [s�1]

/ dimensionless temperature [/ = (T � T1)/

(Tw � T1)]

g dimensionless variable, Eq. (9)

w stream function, Eq. (10)

n similarity variable, Eq. (26)

C Gamma function

Subscripts

o conditions outside the boundary layer

f forced convection

n natural convection

v time average vibrational value

w conditions at the surface

1 conditions in the bulk of the fluid
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civilian applications [7,8]. The subject has also received

increased attention in the chemical industry with the

emergence of applications requiring specificity in mixing

and temperature control that could not be achieved by

conventional mixing or by increasing flow rates. For

example, processes which require long residence time

but nevertheless require careful temperature control,

can benefit greatly from using oscillatory motion, since

low bulk flow velocity permits smaller mixer, while the

heat transfer rate can be controlled independently

through the oscillatory conditions [9]. Similarly, oscilla-

tory motion can be applied for designing compact

high-performance heat exchangers with high precision

temperature control [10–12].

Oscillatory motion can be produced by either pulsat-

ing the fluid [13,14], or vibrating the solid surface

[15,16], which vary according to system configuration.

Although both approaches achieve the same objective

of creating an oscillatory velocity vector between the

solid surface and the fluid medium, the former is more

energy efficient, since the power consumption is focused

on the main transfer resistance at the solid–liquid inter-

face instead of being dissipated into the bulk of the

liquid [17]. Depending on the ratio of the oscillation

amplitude to the mean flow velocity, oscillatory motion

can result in conditions without flow reversal at low

amplitude to velocity ratio, or to conditions where flow

reversal occurs periodically as the ratio increases. Based

on published information, significant heat transfer
enhancement occurs under conditions when the oscillat-

ing amplitude is sufficiently large to cause flow reversal

[12,8].

In order to achieve the full potential of oscillatory

motion for process intensification and for designing

high-performance heat transfer devices, proper under-

standing of the enhancement mechanisms and the funda-

mentals of the thermal and fluid mechanics associated

with oscillatory flows is necessary. Review of the litera-

ture revealed that there is still deficiency in this area,

and the question of understanding the mechanisms in-

volved and their contribution to the enhancement factor

still poses an issue of fundamental importance from the

standpoint of both basic research, and the development

of effective scale up methodologies. For example, and

as pointed out by Drummond and Lyman [18], and Al

Taweel and Landau [19], enhancement due to the forma-

tion of turbulent eddies is significantly different from that

caused by acoustic streaming, or boundary layer thin-

ning, and the parameters affecting each are also different.

In another example, while Ralph [20], and Mackley [21]

attributed performance improvement under oscillatory

flows to standing vortex wave formation, both Rodgers

and Sparks [22], and Abel [23] reported that much of it,

if not most, is due to the negative pressure portion gener-

ated each half of the oscillatory cycle. Both mechanisms,

on the other hand are different from enhancement due to

self-sustained resonant transport reported by Nishimura

et al. [24].



1496 H. Gomaa, A.M. Al Taweel / International Journal of Heat and Mass Transfer 48 (2005) 1494–1504
The fact that there are more than one heat transfer

mechanism involved in most engineering applications

where oscillatory motion is used, makes it necessary to

take into consideration the interaction between them

for predicting the overall enhancement factor. The inves-

tigation done by Dec et al. [12] for heat transfer in a

pulse combustor tail pipe is an example of such interac-

tion, where it was shown that the observed heat transfer

enhancement could not be explained using one single

mechanism, and that the combined effect of different

mechanisms involved must be taken into account for

proper design and scaleup purposes. Another example,

is the case of using oscillatory motion for enhancing pro-

cesses controlled by natural convection. Under such

conditions, the enhancement factor becomes dependent

on the combined effect of both natural convection and

the oscillatory motion. Examples of such applications

include the dream pipes, pulsed heat pipes, and oscilla-

tion-controlled heat transport tubes, where knowledge

of both axial and lateral heat transport to and from

the wall is needed for determining their heat transfer

characteristics [25–27]. It also includes oscillatory elec-

trochemical reactors, particularly if temperature gradi-

ent exists between electrodes surfaces and the adjacent

fluid [28], cooling of micro-electronics equipment, and

measurements of pulsation characteristics in a boundary

layer along heated vertical surface using hot film ane-

mometer [29–32].

In spite of its significance, few studies have been con-

ducted on the combined effect of natural convection and

oscillatory motion on heat transfer characteristic, and

most of them included simplified assumptions and

approximations, such as ignoring the effect of flow rever-

sal. In this paper, the effect of bouncy force and oscilla-

tory motion on both fluid mechanics and heat transfer at

vertical surfaces is analyzed. The heat transfer character-

istics are discussed with reference to the major physical

mechanisms at work, which stems from the interaction

between the velocity and temperature oscillations, and

the mixed convection phenomena induced by the buo-

yancy effect is discussed. The model predictions are

compared with experimental data from previous

investigations.
2. Theoretical analysis

2.1. Background

The subject of diffusion across unsteady boundary

layer has been addressed by several investigators where

it was demonstrated that under conditions of slow shear

variation (low frequencies), a quasi-steady assumption

can be made and Leveque [33] one-third-power law in

which the flux is proportional to the one-third power

of the local shear rate, can be used. In cases, where the
variation of the shear rate is fast (high frequencies), sig-

nificant deviation from the quasi-steady state predictions

occurs, and knowledge of the dynamic behavior of the

thermal boundary layer is required. This was analyzed

for small amplitude oscillations, where the boundary-

layer equation can be linearized and solved asymp-

totically or numerically [34–37]. For large amplitude

oscillations where shear reversal occurs, the basic simpli-

fication of the boundary-layer theory is lost since the

‘‘leading edge’’ of the body changes ends, and the veloc-

ity profile at a given point along the surface becomes not

only dependent on the upstream, but also on the down-

stream flow conditions at different times. For such

conditions, Pedley [38] developed a model based on

combining an asymptotic quasi-steady expansion solu-

tion with a purely diffusive solution during shear rever-

sal that fairly predicted experimental results. The basis

of the analysis was also confirmed by Watkins and Her-

ron [39] who showed that for a plate oscillating with a

zero mean velocity, a Stokes layer will exist over the

plate surface except for a small distance from the plate

leading edges. The problem was also analyzed by Kai-

ping [40], Steenhoven and Van Beucken [41], and Mao

and Hanratty [42,43], who examined numerically the un-

steady forced convective transfer under reversing and

non-reversing shear flow conditions, and reported simi-

lar results.

In presence of natural convection, the situation is

more complex due to the coupling of the momentum

and energy equations, and most investigations resulted

in experimentally developed correlations for the time

average transfer component [15,44–46]. Analyses of the

dynamic behavior were limited to either cases of small

amplitude oscillation with no flow reversal [47–49],

bodies of revolution, where acoustic streaming is the

basic mechanism at work [50,51], or to cases of station-

ary surfaces in an oscillatory temperature or gravity

fields [52–55].

2.2. Model development

Consider the vertical thin flat plate in Fig. 1 heated to

a uniform temperature Tw and placed in an ambient

temperature T1 where a fully developed steady state

natural convection is established due to density differ-

ence. Assume that the property variation with tempera-

ture is limited to density and its effects on the buoyancy

term in the momentum equation (Boussinesq approxi-

mation). As the plate oscillates harmonically in its own

plane, and away from its leading edge, a much thinner

layer (Stokes layer) carried by the plate will develop,

and diffusion across such layer will contribute to the

DC heat transfer component. Near the plate leading

edge, on the other hand, a quasi-steady state forced con-

vection mechanism is dominant and extends from the

plate leading edge to a point on the surface when a
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Fig. 1. Schematic of analytical model.
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particle that past the leading edge first arrives at that

point before the plate changes direction. This mecha-

nism is periodic, and will contribute to the AC heat

transfer component. In other words, for points on the

surface that are never reached by fluid particles, or the

fluid velocity there is too small, as is the case near shear

reversal, the quasi-steady solution is replaced by diffu-

sive solution in presence of gravity force. Based on the

above assumptions, the continuity, momentum, and en-

ergy equations with their appropriate boundary condi-

tions are given by:

ou
ox

þ ov
oy

¼ 0 ð1Þ

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ m
o2u
oy2

þ gðqðT wÞ � qðT1ÞÞ
qðcÞ þ du0

dt
ð2Þ

oT
ot

þ u
oT
ox

þ v
oT
oy

¼ a
o2T
oy2

ð3Þ

where u0 is the fluid velocity outside the boundary layer

relative to the selected coordinate axis,

u0 ¼ ax cosxt ð4Þ

And the boundary conditions given by:

uðx; 0; tÞ ¼ vðx; 0; tÞ ¼ 0 ð5aÞ

uðx;1; tÞ ¼ u0 ð5bÞ

T ðx; 0; tÞ ¼ T w ð5cÞ

T ðx;1; tÞ ¼ T1 ð5dÞ

Since boundary-layer linearization cannot be applied in

cases involving shear reversal, a solution will be devel-

oped near the plate leading edge based on the fact that,

the flow there is essentially Blasius, and the situation is
that of determining the effect of the buoyancy forces

on the upward or downward forced convection solution.

On the other hand, and far away from the plate leading

edge, the layer is mainly Stokes, and the situation will be

of determining the rate of heat transfer across the layer

in presence of buoyancy force.

2.3. Development of the pseudo-steady state solution

(DC)

Away from the plate leading edge, an unsteady prob-

lem is formed with initial conditions that evolves to

‘‘pseudo-steady state solution’’ at large times. The intent

is to develop an approximate expression for the steady

state component without residing to the solution of the

initial value problem. In doing so the steady state heat

and momentum equations will be used with the attempt

to evaluate the steady state effect of oscillations. Eqs. (2)

and (3) reduce to:

u
ou
ox

þ v
ou
oy

¼ m
o2u
oy2

þ gku ð6Þ

u
oT
ox

þ v
oT
oy

¼ a
o2T
oy2

ð7Þ

where u is the dimensionless temperature defined by:

u = (T � T1)/(Tw � T1) and k, the volumetric expan-

sion coefficient:

k ¼ T1=qðT1Þ½oq=oT �T¼T1
ð8Þ

Introducing the dimensionless Pohlhausen variable,

g ¼ ½gk=4m2�1=4y=x1=4 ð9Þ

and the stream function

w ¼ 4m½gk=4m2�1=4x3=4pðgÞ ð10Þ

where the function p is unknown. In terms of the new

variable, the velocity components are,

u ¼ 4m½gk=4m2�1=2p0ðgÞ ð11Þ

v ¼ m½gk=4m2�1=4ðgp0 � 3pÞ=x1=4 ð11aÞ

and Eqs. (6) and (7) take the form:

p000 þ 3pp00 � 2ðp0Þ2 þ u ¼ 0 ð12Þ

u00 þ 3ðPrÞpu0 ¼ 0 ð13Þ

and, finally, for the boundary conditions of the problem,

we obtain the expressions:

p ¼ p0 ¼ 0; u ¼ 1; for g ¼ 0 ð14Þ

p0 ¼ p0; u ¼ 0 for g ¼ 1 ð15Þ

For large values of Pr number, the thermal boundary

layer becomes thin and consequently only the fluid layer
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next to the plate contributes significantly to the heat

transfer resistance. Such assumption was found to be va-

lid by Ruckentein and Rajagopalan [56] even for values

of Pr number near the order of unity. Accordingly, solu-

tion of Eq. (13) takes the following form:

u ¼ 1�
R g
0
exp �3Pr

R g
0
pdg

� �
dg

� �
R1
0

exp �3Pr
R g
0
pdg

� �
dg

� � ð16Þ

In Eq. (16), the function p would be determined based

on the fact that the integrals converge rapidly, and its

magnitude is determined mainly by the value of p for

small values of g. Therefore, and without introducing

any significant error, the boundary conditions at infinity

given in Eq. (15) may be replaced by new boundary con-

ditions, which is fulfilled at a finite distance g = g0 from
the surface:

p0 ¼ uðg0Þ=½4m½gk=4m2�
1=2� ð17aÞ

u ¼ 0; g ¼ g0 ð17bÞ

And u(g0) and g0 are given by [57],

uðg0Þ ¼ awf1� e�g
0 cosðwt � g0Þg ð17cÞ

g0 ¼ y0ðw=2mÞ
1=2 ð17dÞ

Owing to the rapid convergence of the integrals in Eq.

(16), we can write a series expansion in powers of g
for the function p for g < g0, and retain only the first

terms of the expansion. In view of the boundary condi-

tions in Eq. (14), the series expansion of p is:

p ¼ ðb=2Þg2 þ ðc=6Þg3 þ � � � ð18Þ

Substituting the expression for p from Eq. (18) into the

solution given in Eq. (16), and using only one term as

first approximation:

u ¼ 1�

R g
0
exp �bPr g3

2

n o
dg

h i
R1
0

exp �bPr g3

2

n o
dg

h i ð19Þ

Which yields the following solution:

u 
 1� ½ðbPr=2Þ1=3g�Cð4=3Þ ð20Þ

Using the boundary conditions in (17b):

u ¼ 0 
 1� ½ðbPr=2Þ1=3g0�Cð4=3Þ ð21Þ

Substituting the temperature distribution given by Eq.

(20) into Eq. (12):

p000 þ 3pp00 � 2ðp0Þ2 þ 1� ½ðbPr=2Þ1=3g�Cð4=3Þ ¼ 0 ð22Þ

Using the method of successive approximation, and

restricting the solution to the lower powers of g, an

approximate solution of (22), may be written in the

form:

p ¼ bg2=2� g3=6þ ½ðbPr=2Þ1=3g4�=½ð24ÞCð4=3Þ� ð23Þ
From the boundary condition in (17a),

bg0 � g2
0=2þ ½ðbPr=2Þ1=3g3

0�=½ð6ÞCð4=3Þ�
� uðg0Þ=½4m½gk=4m2�

1=2� ¼ 0 ð24Þ

Solving (24) with (21), and reverting to dimensional vari-

ables, the temperature distribution can be determined

using Eq. (20) in the form:

DT ¼ DT wðbPr=2Þ1=3½gk=4m2�1=4y=x1=4 ð25Þ
2.4. Solution near the leading edge (oscillatory––AC

component)

The oscillatory solution will be determined, for sim-

plicity, for one cycle oscillation, where the plate reverse

its direction at time t = 0. For a point x on the surface,

and long before reversal, fluid velocity, and conse-

quently the convection term, are large in comparison

with unsteady diffusion, and the temperature distribu-

tion can be approximated by a ‘‘quasi-steady’’ solution.

This condition will continue until a time �t1(x) when

fluid particles which had passed the leading edge at

x = 0 first failed to arrive at x before flow reversal.

For t > �t1(x), the fluid velocity is too small to an ex-

tend where convection becomes relatively unimportant,

and the temperature distribution can be approximated

by a ‘‘quasi-diffusive’’ solution. This condition will con-

tinue through shear reversal until time t2(x) when the

fluid velocity becomes sufficiently large again, and a

quasi-steady layer growing from the opposite edge at

x = L arrives at point x, and a quasi-steady solution is

applied again. If conditions are such that no fluid parti-

cles arrives to x from L, then the quasi-diffusive solution

will continue through the second reversal until a quasi-

steady layer reaches x from x = 0. For that part of the

surface where the effect of neither edge is felt, the tem-

perature distribution will be given by the steady solution

in Eq. (25). Applying the above assumptions:

(a) For times t < �t1(x), and t > t2(x): which repre-

sents times long before and after shear reversal, Eq.

(3), can be solved by omitting the unsteady term, and

approximating the velocity by the sum of its oscillatory

and natural convection components. Introducing the

similarity variable n:

n ¼ y S1=2 9a
Z x

0

S1=2 dx
� �
� �1=3

ð26Þ

Eq. (3) can be written as:

u00 þ 3n2u0 ¼ 0 ð27Þ

where,

u ¼ yS; v ¼ �ð1=2Þy2S0 ð28Þ
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S ¼ Sf þ Sn ¼ ðou=oyÞy¼0 ð29Þ

Sf ¼ 0:332u3=20 =ðxmÞ1=2 ð30Þ

Sn ¼ 4bm½gk=4m2�3=4x1=4 ð31Þ

and the resulting solution leads to:

DT ¼ DT w 1� ½1=Cð4=3Þ�
Z n

0

e�n3 dn

� �
ð32Þ

(b) For times �t1(x) < t < t2(x): which represent the

period near shear reversal, the convective term in Eq. (3)

becomes small and the temperature distribution is given

by the unsteady diffusion,

oT
ot

¼ a
o2T
oy2

ð33Þ

The appropriate solution of (33) is:

DT ¼ DT werfcfy½4aðtðxÞ þ tiðxÞÞ��1=2g ð34Þ

where ti(x) is the initial conditions required to solve (33),

and represents the time when pure diffusion has started

or the ‘‘virtual origin of the diffusion’’. Eqs. (32) and

(34) can be used for determining the oscillatory heat

transfer component by determining the transition times,

�t1(x), ti(x), and t2(x) together with maximum penetra-

tion distance, or the leading edge effect. The latter is

determined from:

xm0 ¼ y
Z 0

�p=x
S dt for � p=x < t < 0 ð35Þ

and

xml ¼ y
Z p=x

0

S dt for 0 < t < p=x ð36Þ

Since u is sheared proportional to y and does not take a

unique value, the criteria proposed by Pedley [38] for

selecting the value of y at the centre of mass will be

applied. The centre of mass y
^
is defined by:

y
^ ¼

Z 1

0

yT dy=
Z 1

0

T dy ð37Þ

Using Eq. (32), y
^
can be determined from,

y
^ ¼ 0:37½9ax=SðtÞ�1=3 ð38Þ

The time parameters �t1(x) and t2(x) are determined by

solving Eqs. (35) and (36) for each point on the surface,

xT, where there is a transition between quasi-steady and

diffusive solution in the range 0 < x < xm0, and

(L � xml) < x < xml. The virtual origin of diffusion

ti(x), is determined by the requirement that the centre

of mass of the temperature distribution be continuous

at the transition time. From Eqs. (32) and (34) this

continuity requires that,
ðp=4Þðt0ðxÞ � t1ðxÞÞ ¼ ½9ax=Sð�tÞ1ðxÞ�
2=3n

�02
� ð39Þ

The overall time dependent heat transfer coefficient can

then be determined from:

hðtÞ ¼ ða=DT wLÞ
Z l

0

½�oT=oy�y¼0 dx ð40Þ

where the integrand is given by the solutions in Eqs.

(25), (32) and (34) to be:

½�oT=oy�y¼0 ¼ DT w½�SðtÞ=9ax�1=3=Cð4=3Þ
for t 6 �t1 ð41aÞ

¼ DT w½�SðtÞ=9að1� xÞ�1=3=Cð4=3Þ
for t P t2 ð41bÞ

¼ DT w½paðt0ðxÞ þ t1ðxÞÞ��1=2

for � t1 < t < t2 ð41cÞ
¼ DT wðbPr=2Þ1=3½gk=4m2�1=4=x1=4

for all t; xm0 < x < xml ð41dÞ

h(t) is evaluated by integrating either (41a) from 0 to xT
and (41c) from xT to L, if S(t) > 0, or (41c) from 0 to xT
and (41b) from xT to L, if S(t) < 0. If conditions are such

that there exist a section on the surface xm0 < x < xml
where the effect of neither leading edges is felt, then

Eq. (41d) will be integrated from xm0 to xml, for the en-

tire cycle to determine the steady state component. The

oscillatory component in this case is evaluated by inte-

grating either (41a) from 0 to xT and (41c) from xT to

xm0, and from xml to L if S(t)>0, or (41c) from 0 to

xm0 and from xml to xT and (41b) from xT to L, if

S(t) < 0. The time average heat transfer coefficient is

then determined from:

hv ¼ ð1=2pÞ
Z p=x

�p=x
hðtÞdt ð42Þ
3. Results and discussion

3.1. Time average heat transfer

The rate of heat transfer at the surface of stationary

vertical plate is controlled by the natural convection

boundary layer created by the density difference due to

temperature change near its surface. When an oscillatory

motion is created between the plate and the adjacent

fluid, the time average vibrational heat transfer coeffi-

cient (hv), increases with increasing either the frequency

or amplitude of vibration. Fig. 2 shows the effect of

oscillation on the time average heat transfer rate

expressed in terms of the enhancement factor E defined

by,

E ¼ Nuv=Nun ð43Þ
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where Nuv, and Nun represents Nusselt numbers under

oscillating and stationary conditions respectively. As

seen from Fig. 2 oscillations increases E with the extent

of enhancement being most pronounced for small values

of Grashof number Gr. The influence of oscillations

diminishes as Gr increases, where free convection effects

dominate over the oscillation effects, and the opposite

situation prevails at low values of Gr. Referring to Fig.

3a and b further substantiates this argument, where
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Fig. 3. (a) Effect of Gr on heat transfer rate in presence of

oscillatory motion and (b) effect of Rev on heat transfer rate.
the effect of oscillation is considerably reduced as Gr in-

creases and all the curves tend to merge with the pure

convection curve (Fig. 3a). Similarly, for low values of

Gr, the curves tend to merge with the pure forced con-

vection curve (Fig. 3b). In this region however, free con-

vection effects are not completely masked by the

oscillations, and both free and forced convection effects

influence the heat transfer rate.

The predicted increase in heat transfer rate due to

oscillation agrees well the experimental measurements

of Prasad and Ramanathan [45], and Eshgy et al. [49],

for heat transfer from vertically oscillating flat surfaces

as shown in Figs. 4 and 5. The increase, as explained ear-

lier, is attributed to the larger temperature gradient

across the thin Stokes layer formed by the surface oscil-

latory motion, in combination of the enhanced transfer

at the leading edges of the plate, which also increases

with both amplitude and frequency of oscillation. The

model predictions converges to the pure natural convec-

tion solution as aw! 0, and to the pure oscillatory

forced convection in absence of buoyancy force. In the

first case, p 0 ! 0, in Eq. (17a) and the average heat

transfer coefficient is calculated by integrating Eq.

(41d) over the entire surface, which for Pr = 0.72 leads

to the standard natural convection solution [57],

Nun ¼ 0:516ðGr � PrÞ0:25 ð44Þ

In the second case, Eq. (41d)! 0, and the time average

heat transfer coefficient is calculated by integrating

either Eq. (41a) or (41b) over the entire surface, which

in absence of natural convection give the same time

average value for both halves of the oscillatory cycle.

Using the time average oscillatory velocity (uave =

0.64ax), and for Pr = 0.72, the integration result in the

standard equation for heat transfer over a flat plate

given by [57],

Nuf ¼ 0:632Re0:5Sc0:333 ð45Þ

Eq. (45) can also be written in terms of the vibrational

Reynolds number Rev = axL/m as,
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Nuf ¼ 0:506Re0:5v Sc0:333 ð45aÞ

The above suggests that, it is possible from a practical

point to express the effect of oscillation on heat transfer

at vertical surface in terms of mixed natural and forced

oscillatory convections, and to estimate Nuv using a

mixed convection correlation given by [58],

Nuv ¼ ½Nu3n þ Nu3f �
1=3 ð46Þ

Fig. 6 shows a plot of Eq. (46) in terms the similarity

parameter Gr=Re2v used by Acrivos [59] to indicate the

relative influence of forced and natural convections in

a mixed convection process. This influence becomes sig-

nificant when the Reynolds number is of the same order

of magnitude as the Grashof number. Furthermore, it is

expected that at any value of Gr=Re2v between the limits

of pure oscillatory and pure free convection, the Nusselt

number Nu would be higher than it would be in either of

these modes alone. The agreement between Eq. (46) and
the experimental data shown in Fig. 6 further supports

the argument of using mixed convection correlation

for predicting the effect of oscillation on the time aver-

age heat transfer rate at vertical surfaces. Under such

conditions, and as shown in Fig. 6, the free convection

limit is approached at approximately Gr=Re2v ¼ 3, while

the oscillatory forced convection limit is approached at

approximately Gr=Re2v ¼ 0:1. This suggests that oscilla-
tions enhance heat transfer rate at vertical surfaces in

the region of 0 < Gr=Re2v < 3:0, and that the influence

of natural convection on heat transfer enhancement be-

comes significant for values of Gr=Re2v > 0:1.

3.2. Oscillatory heat transfer

Analysis of the transient heat transfer data revealed

several observations that could not be explained by

Leveque quasi-steady analysis. First, and as shown in

Figs. 7 and 8, the oscillatory (AC) component, is rela-

tively small in comparison to the pseudo-steady (DC)

component, and never reaches zero as predicted by the

quasi-steady analysis. Furthermore, the ratio of the

AC to DC component was also noticed to decrease with

increasing L/a, as shown in Fig. 9, where the AC compo-

nent is �45% of the total value for L/a = 0.25 in Fig. 7

compared to �24% for L/a = 1.5 in Fig. 8. This observa-

tion could be explained using the present analysis to be

due to the presence of a quasi-diffusive mechanism that

accounts for the relatively large DC component that

does not reach zero at reversal time. Meanwhile, the

dependency of the AC to DC ratio on L/a can be attrib-

uted to fact that the former is determined by the fraction

of surface being reached by fluid particles from the lead-

ing at the beginning of each half cycle, which varies with

the amplitude of oscillation.

The second observation is the complex harmonic

structure of the oscillatory component, which behaved

as a composite signal of two sub-harmonics with charac-

teristic frequencies f and 2f that varied in amplitude
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depending on the surface height and the oscillation

parameters. For example, while the amplitude of the sec-

ond harmonic in Fig. 7 is �40% of the first, it decreases

as L/a increases to �26% in Fig. 8. This can be attrib-

uted to the opposite effect of the buoyancy force in each

half of the oscillating cycle, which increases with Gr until

a situation occurs where the steady effect becomes much

higher than the oscillatory term to mask the second har-

monic during the ‘‘opposing-flow’’ half cycle. Such

behavior is different from that predicted by the quasi-

steady solution as shown in Figs. 7 and 8.

Although no experimental data for transient heat

transfer at vertical surfaces in presence of oscillatory

motion is available for comparison, the predicted tem-

poral heat transfer agrees, qualitatively, with the data

of Gomaa et al. [15], and Liu et al. [44] for mass transfer

at vertically oscillating flat surfaces, which showed a def-

inite oscillatory component (AC) superimposed on a

much larger steady one (DC) throughout the vibratory

cycle, that did not follow the oscillatory velocity, which

periodically approaches zero at reversal times. This is

further confirmed by the interferograms of the heat

transfer boundary layer at a longitudinally vibrating ver-
tical plate obtained by Prasad and Ramanathan [45],

which show an almost steady thickness boundary layer

that did not change significantly throughout the vibra-

tory cycle. Therefore, and based on the relatively good

agreement with the time average experimental data, it

can be assumed that the present model adequately de-

scribe the heat transfer and fluid mechanics at vertical

surfaces in presence of oscillatory motion. The accuracy

of the model however, is expected to be highest at larger

L/a ratios due in part to the weaker effect of the leading

edge at small amplitude to surface ratios, which would

decrease the associated error resulting from the ‘‘abrupt

take-over’’ assumption between the quasi-steady and

diffusive mechanisms near reversal times. Another factor

would also be the weaker effect of the error introduced

by the ‘‘so-called wake’’, where a relatively low concen-

tration fluid is carried back over the surface during

reversal time, a factor was not addressed in the present

analysis, and could lead to lager error for large a/L

ratios.
4. Conclusions

Oscillatory motion enhances the rate of heat transfer

at vertical surfaces with the increase being highest at

higher frequencies and amplitude of oscillation. The

enhancement can be attributed to two heat transfer

mechanisms. First, and away from the surface edges,

heat transfer occurs primarily by diffusion across a layer

which is much thinner than natural convection layer in

absence of oscillation (Stokes layer). Second, and near

the surface edges, a quasi-steady mechanism is dominant

and contributes to the formation of an AC component

with characteristic frequency that varies in amplitude

and frequency from f for large values of L/a to 2f, with

increasing the amplitude to height ratio. From a practi-

cal point of view, it is possible to calculate the time aver-

age heat transfer coefficient using a mixed convection

expression with the forced convection term calculated

based on the time average oscillatory velocity. Under

such conditions, the effect of oscillations on heat transfer

enhancement is most pronounced in the region of

0 < Gr=Re2v < 3:0, beyond which heat transfer becomes

mainly determined by natural convection. On the other

hand, for values of Gr=Re2v < 0:1, the effect natural con-
vection becomes insignificant, and that heat transfer rate

is determined mainly by forced oscillatory convection.

In the region 0:1 < Gr=Re2v < 3:0, the influence of both

natural and oscillatory forced convections must be taken

into account for determining the time average heat

transfer rate at vertical surfaces in presence of oscilla-

tory motion. The fact that modest heat transfer enhance-

ment is observed under the present conditions (<2) is

due to the small convective term in the energy equation,

which as shown by Kurzweg [4–6] that much larger heat
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transfer enhancement can be achieved by increasing the

axial temperature gradient in presence of oscillatory

motion.
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